Journal of Organometallic Chemistry, 209 (1981) 161–168 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

THE SYNTHESIS AND PROPERTIES OF ANTIMONY-NITROGEN DONOR LIGANDS

WILLIAM LEVASON * and BAHARUDDIN SHEIKH

Department of Chemistry, The University, Southampton SO9 5NH (Great Britain) (Received October 6th, 1980)

Summary

The synthesis of the hybrid ligands $SbPh_n(o-C_6H_4NMe_2)_{3-n}$ (n = 0, 2), $Me_2N(CH_2)_3SbR_2$, $MeN(CH_2CH_2SbR_2)_2$ and $N(CH_2CH_2CH_2SbR_2)_3$ (R = Me, Ph), are described.

The ligands were characterised by ¹H NMR and mass spectra, and by the preparation of quaternary derivatives and stibine-sulphides. Attempts to prepare $Me_2NCH_2CH_2SbPh_2$ and $N(CH_2CH_2SbPh_2)_3$ were unsuccessful.

Introduction

We have previously [1] described the synthesis of ligands containing various combinations of antimony and sulphur (-SR) or oxygen (-OR) donor groups. The present paper describes antimony-nitrogen ($-NR_2$) analogues. Since these donors reflect the extremes of hard and soft behaviour in Group VB ligands, their coordination chemistry should be particularly interesting. The synthesis of (*o*-dimethylaminophenyl)dimethylstibine *o*-C₆H₄(SbMe₂)(NMe₂) (1) has been described previously [2,3].

Results

The Grignard reagent prepared from (o-bromophenyl)dimethylamine reacts with dimethylbromostibine, Me₂SbBr, to form I, [2,3] and with diphenylchlorostibine, Ph₂SbCl, to produce the new ligand (o-dimethylaminophenyl)diphenylstibine, $o-C_6H_4(NMe_2)(SbPh_2)$ II. The tripodal, tetradentate tris(o-dimethylaminophenyl)stibine, (o-Me₂NC₆H₄)₃Sb III, was prepared from $o-Me_2NC_6H_4$ -MgBr and antimony trichloride, or in rather higher yield using the o-lithio derivative $o-Me_2NC_6H_4Li$. Ligands II and III are air-stable solids. Their mass spectra show ions due to successive Sb—C cleavage, with Ph—Ph⁺ as the base peak for II (cf. the distibine $o-C_6H_4(SbPh_2)_2$ [4]), and $C_6H_4NMe_2^+$ (m/e = 121) for III. The fragmentation of the methyl analogue I is as usual very different showing stepwise loss of Me groups [3,5].

Several attempts to prepare (2-dimethylaminoethyl)diphenylstibine, $Me_2NCH_2CH_2SbPh_2$, from NaSbPh₂ and (2-chloroethyl)dimethylamine, $CICH_2CH_2NMe_2$, in liquid ammonia were unsuccessful. The product of these reactions was a brownish oil, the 'H NMR spectrum of which revealed the complete absence of methylene groups and the Me_2N -unit. Air oxidation of this oil slowly produced a white solid identified as diphenylstibinic acid [1].

However, (3-dimethylaminopropyl)diphenylstibine, $Me_2NCH_2CH_2CH_2SbPh_2$ IV, was readily obtained from NaSbPh₂ and $Me_2NCH_2CH_2CH_2Cl$, as a fawn oil which appears to be air-stable. On heating with MeI in ethanol, IV produces a white monomethiodide, the ¹H NMR spectrum confirming the nitrogen as the alkylated heteroatom (Table 1), as expected since Ph₂SbR groups do not quaternise under these conditions [1,6]. The corresponding reaction of $Me_2NCH_2CH_2CH_2Cl$ and NaSbMe₂ produced (3-dimethylaminopropyl)dimethylstibine, $Me_2NCH_2CH_2CH_2CH_2SbMe_2$ V, as a colourless, distillable oil. This is airsensitive, depositing a white material on exposure to air, but is markedly less air-sensitive than the structurally similar distibine $Me_2SbCH_2CH_2CH_2SbMe_2$ [7] which is spontaneously inflammable at temperatures > $\approx 80^{\circ}C$. Ligand V gave a diquaternary derivative on reaction with MeI.

In view of the failure to prepare the dimethylene-backboned bidentate (above) we were surprised to observe that reaction of bis(2-chloroethyl)methylamine, MeN(CH₂CH₂Cl)₂, with NaSbPh₂ in liquid ammonia produced the tridentate bis(2-diphenylstibinoethyl)methylamine, MeN(CH₂CH₂SbPh₂)₂ VI. The ligand could also be prepared using LiSbPh₂ in THF [8] in place of the NaSbPh₂/ liquid ammonia. The cleavage of Ph₃Sb by lithium is slower than by Na/NH₃, but providing the THF is rigorously dry and the reaction conducted at 0°C under oxygen free conditions the yields are good (after destruction of PhLi by ^tBuCl, ca. 80% as measured by the amount of chloro compound required to completely discharge the red stibide colour). The ligand VI gave a mono-

TABLE 1

¹H NMR SPECTRA

Ligand		Chemical shift and assignment a (7)
I	o-C6H4(SbMe2)(NMe2)	2.3-3.0(m) C ₆ H ₄ , 7.4(s) NMe ₂ , 9.2(s) SbMe ₂
II	$o-C_6H_4(SbPh_2)(NMe_2)$	$2.5-2.9(m) C_6H_5 + C_6H_4$, 7.45(s) NMe ₂
ш	(o-C ₆ H ₄ NMe ₂) ₃ Sb	2.6-3.2(m) C ₆ H ₄ , 7.35(s) NMe ₂
IV	Ph ₂ Sb(CH ₂) ₃ NMe ₂	2.4-3.0(m) C ₆ H ₅ , 7.7-8.3(m) CH ₂ ^c , 8.1(s) NMe ₂
v	Me2Sb(CH2)3NMe2	7.8(m) NCH ₂ , 7.9(s) NMe ₂ , 8.3-8.7(m) ^c CH ₂ , 9.4(s) SbMe ₂
VI	MeN[CH2CH2SbPh2]2	2.4–2.8(m) C_6H_5 , 7.4(m) +7.9(m) CH_2 ^c , 7.95(s) NMe
VII	MeN[CH ₂ CH ₂ SbMe ₂] ₂	7.4(t) NCH ₂ , 7.8(s) NMe, 8.4(t) SbCH ₂ , 9.25(s) SbMe ₂
VIII	N[CH ₂ CH ₂ CH ₂ SbPh ₂] ₃	$2.5-2.9(m) C_6H_5$, 7.3-7.8(m) 8.3(m) ^c CH ₂
IX	N[CH ₂ CH ₂ CH ₂ SbMe ₂] ₃	7.55(m) NCH ₂ , 8.5-8.8(m) CH ₂ , 9.3(s) SbBe ₂
I	MeI ^b	2.3-3.2(m) C ₆ H ₄ , 7.3(s) NMe ₂ , 8.2(s) Sb ⁺ Me ₃
IV	MeI b	$2.2-2.8(m) C_6H_5$, 6.8(m) NCH ₂ , 6.9(s) N ⁺ Me ₃ , 7.5-8.3(m) CH ₂ ^c
v	MeI ^b	6.85(m) NCH ₂ , 6.9(s) NMe ₃ ⁺ , 7.9(m) CH ₂ , 8.35(s) Sb ⁺ Me ₃
VI	MeI b	2.0-2.7(m) C_6H_5 , 6.8, 7.7(m) CH_2 ^c , 7.1(s) $N^{\dagger}Me_2$
	MeN[CH ₂ CH ₂ Sb(S)Me ₂] ₂	7.15(t) NCH ₂ , 7.65(t) SbCH ₂ , 7.7(s) NMe, 8.45(s) Sb(S)Me ₂
	N[CH2CH2CH2Sb(S)Me2]3	7.4(m) NCH ₂ , 7.8-8.3(m) CH ₂ Sb + CH ₂ CH ₂ Sb ^c , 8.45(s) Sb(S)Me ₂

^a CDCl₃ relative internal TMS, except ^b (CD₃)₂SO. ^c Complex or unresolved multiplets.

methiodide with MeI, quaternisation occurring at the nitrogen (Table 1). The corresponding methylstibine, MeN(CH₂CH₂SbMe₂)₂ VII, was also readily prepared. This was an air-sensitive fawn oil which could not be distilled *, but which showed no evidence of decomposition on heating to 50° C/0.1 torr to remove volatile impurities. Quaternisation gave a white microcrystalline solid, poorly soluble in organic solvents, for which both the analytical data and ¹H NMR spectrum indicated that a mixture of quaternary derivatives had been obtained. These could not be separated due to poor solubility. The stibine sulphide derivative MeN(CH₂CH₂Sb(S)Me₂)₂ was easily prepared from the ligand and two equivalents of sulphur in refluxing toluene. It is a fawn, air-stable solid, readily soluble in toluene, and CHCl₃. The ¹H NMR spectrum has a single -Sb(S)(Me₂) resonance at 8.45 τ .

Attempts to synthesise the tripod tetradentate $N(CH_2CH_2SbPh_2)_3$ from $N(CH_2CH_2Cl)_3$ and either NaSbPh_2/liquid NH₃ or LiSbPh_2/THF failed, the major product being diphenylstibinic acid.

The propane-backboned analogue, tris(3-diphenylstibinopropyl)amine VIII presented no problems (Scheme 1).

SCHEME 1

$$2 \operatorname{Cl}(\operatorname{CH}_{2})_{3}\operatorname{OH} + \operatorname{H}_{2}\operatorname{N}(\operatorname{CH}_{2})_{3}\operatorname{OH} \xrightarrow{\operatorname{K}_{2}\operatorname{CO}_{3}}_{\operatorname{EtOH}}\operatorname{N}(\operatorname{CH}_{2}\operatorname{CH}_{2}\operatorname{CH}_{2}\operatorname{OH})_{3}$$

$$\downarrow (i) \operatorname{SOCl}_{2}$$

$$\downarrow (ii) \operatorname{NaOH}$$

$$\operatorname{N}(\operatorname{CH}_{2}\operatorname{CH}_{2}\operatorname{CH}_{2}\operatorname{SbPh}_{2})_{3} \xleftarrow{\operatorname{LisbPh}_{2}}_{\operatorname{THF}}\operatorname{N}(\operatorname{CH}_{2}\operatorname{CH}_{2}\operatorname{CH}_{2}\operatorname{Cl})_{3}$$

$$(\operatorname{VIII})$$

Ligand VIII was obtained as a brownish viscous oil which resisted all attempts to crystallise it. The reaction of NaSbMe₂ with N(CH₂CH₂CH₂Cl)₃ in liquid ammonia gave the alkyl analogue tris(3-dimethylstibinopropyl)amine IX, as a mobile, yellowish, air-sensitive liquid. The proton NMR spectrum revealed the presence of a small amount of tetramethyldistibane impurity, which was largely but not completely, removed by pumping at ca. 50°C/0.01 torr. Attempts to produce a quaternary derivative of this ligand gave a sticky white solid which decomposed in air. The sulphide N(CH₂CH₂CH₂Sb(S)Me₂)₃ was readily prepared as a brown oil which solidifies ca. 10°C. The "Pr₃Sb=S is also a low melting solid (35°C) [11].

The ¹H NMR spectra of the tridentates MeN(CH₂CH₂SbR₂)₂ (Table 1) showed the expected triplets for NCH₂ and CH₂Sb signals, but for the propanebackboned ligands the backbone protons produced poorly resolved multiplets at ca. 7.5 τ NCH₂ and ca. 8.3–8.7 τ CH₂Sb + CH₂CH₂Sb. The quaternary derivatives also gave complex multiplet resonances for the backbone protons.

The mass spectra of the two bidentates $Me_2NCH_2CH_2CH_2SbR_2$ did not exhibit a parent ion, the highest m/e observed corresponding to the cleavage of a terminal group from the antimony. This is reasonable in the light of the results

^{*} Decomposition has also been observed on attempting to distill the aminearsine analogues [9], and small amounts of decomposition occur even with the α, ω -bis(dimethylstibino)alkanes [10].

164

from the corresponding distibines: for Me₂Sb(CH₂)₃SbMe₂ the ion of highest m/e is also $P - Me^{+}$, whilst for Ph₂Sb(CH₂)₃SbPh₂, $P - Ph^{+}$ is the first major peak (I = 10%), although a weak parent ion (I = 1%) was detectable [12]. The main fragment ions in the case of ligand IV are $P - Ph^{+}$, Ph₂Sb⁺, PhSb⁺, Ph--Ph⁺ with the ion at m/e = 58 as base peak. This is [13] the immonium ion $(CH_3)_2N=CH_2^{+}$ produced by cleavage β to the nitrogen. For ligand V nitrogen-containing fragments are rather more prominent, (Experimental section) and again the base is the ion of m/e = 58.

The tridentate MeN(CH₂CH₂SbMe₂)₂ did not exhibit a parent ion but $P - Me^+$ was intense ($m/e = 371/373/375 \Sigma I = 132\%$ of observed base). The observed base was again the immonium ion at m/e = 58. The mass spectra of MeN-(CH₂CH₂SbPh₂)₂ and the two tetradentates were less informative due to extensive decomposition, not unexpected in view of the masses and the presence of several relatively weak C-Sb bonds. All the expected nitrogen and mono-antimony fragments were found, but no peaks corresponding to diantimony species were found. The spectra charged with time, probably due to thermal decomposition on the probe.

Discussion

The most unexpected result was the successful synthesis of the dimethylenebackboned bidentates $MeN(CH_2CH_2SbR_2)_2$, which contrasts with the failure to obtain either the bi- or tetradentate analogues $Me_2NCH_2CH_2SbPh_2$ and $N(CH_2CH_2SbPh_2)_3$. Elimination also occurs on reaction of stibide nucleophiles with 1,2-dichloroethane [14], *cis* and *trans* 1,2-dichloroethylene [15] and bis-(2-chloroethyl)sulphide, $S(CH_2CH_2Cl)_2$ [1], but normal substitution reactions occur with phosphorus and arsenic nucleophiles. The phosphorus and arsenic analogues of the amine-stibines are also known, viz. $Me_2NCH_2CH_2PPh_2$ [16], $Me_2NCH_2CH_2AsPh_2$ [9], $N(CH_2CH_2PPh_2)_3$ [17], and $N(CH_2CH_2AsPh_2)_3$ [18].

Clearly in the reactions of 2-chloroethyl compounds with antimony nucleophiles there is a subtle balance between elimination and substitution. A somewhat similar anomaly occurs in the reactions of LiAsPh₂ with 1,2-dichloroethane which gives Ph₂AsCH₂CH₂AsPh₂, whilst 1,2-dibromoethane gives tetraphenyldiarsine Ph₄As₂ [19]. In the cases where elimination occurred the antimony-containing product was diphenylstibinic acid, Ph₂SbO₂H, no doubt the air-oxidation product of Ph₂SbH (or Ph₄Sb₂?) initially formed *. The other product of elimination will be the appropriate enamine [20,21], which under the conditions of the reaction and workup will be hydrolysed to amine and aldehyde, accounting for our failure to isolate any nitrogen-containing products.

Experimental

Physical measurements and the antimony starting materials were obtained as before [1]. The preparation of (o-dimethylaminophenyl)dimethylstibine, I, has been described elsewhere [3]. The chloroalkylamines $Me_2N(CH_2)_2Cl$ and

^{*} In a previous study [15] oxidation of Ph₄Sb₂ under certain conditions was found to give Ph₂SbOSbPh₂. It is not certain whether the production of Ph₂SbO₂H in the present case reflects different conditions or a different starting material, Ph₂SbH.

 $Me_2N(CH_2)_3Cl$ were obtained from their hydrochlorides (Aldrich) by treatment with aqueous NaOH, followed by ether extraction and drying (Na₂SO₄). MeN-(CH₂CH₂Cl)₂ and N(CH₂CH₂Cl)₃ were prepared by literature methods [22,23] from the corresponding alcohols (Aldrich). The preparation of N(CH₂CH₂CH₂Cl)₃ is described below. In general all the chloroalkylamines were prepared freshly when required, and the crude oils obtained by evaporation of the organic extractant (usually ether or CHCl₃) used directly. Caution: Chloroethylamines are nitrogen mustards and should be treated with due care.

All ligand preparations were conducted under a dry dinitrogen atmosphere.

$(o-Dimethylaminophenyl)diphenylstibine, o-C_6H_4(SbPh_2)(NMe_2)(II)$

The Grignard reagent was prepared from o-bromophenyldimethylamine [3] (11.5 g 0.056 mol) and magnesium (1.5 g 0.06 mol) in dry diethylether (100 cm³), and chlorodiphenylstibine (17.6 g 0.056 mol) in tetrahydrofuran (100 cm³) added. The mixture was refluxed for 1 hour, cooled, hydrolysed and separated. The organic layer was dried (Na₂SO₄), evaporated, and the resulting oil crystallised from ethanol; 9 g, 33%. Found: C, 60.3; H, 4.8; N, 3.4. $C_{20}H_{20}NSb$ calcd.: C, 60.6; H, 5.0; N, 3.5%. M.P. 76–78°C. Mass spectrum *: 395(1.5) $C_{20}H_{20}NSb$; 318(15) $C_{14}H_{15}NSb$; 275(9) $C_{12}H_{10}Sb$; 198(43) C_6H_5Sb ; 154(100) $C_{12}H_{10}$.

Tris(o-dimethylaminophenyl)stibine, $Sb(o-C_6H_4NMe_2)_3$ (III)

Method 1: This was using a similar preparation to II from o-C₆H₄Br(NMe₂) (30.9 g 0.15 mol), magnesium (3.9 g 0.16 mol) and SbCl₃ (12.2 g 0.05 mol) in THF; 12 g 47%.

Method 2: A solution of $o-C_6H_4Br(NMe_2)$ (40 g 0.2 mol) in diethyl ether (100 cm³) was added dropwise to n-butyllithium (1.6 *M*, 125 cm³) in hexane at 0°C. After 1 hour a solution of antimony trichloride (15.2 g 0.065 mol) in THF (100 cm³) was added and the mixture refluxed for 30 minutes. After hydrolysis the organic layer was separated, dried and evaporated. The resulting oil was recrystallised from ethanol and acetone; 18 g, 57%, M.P. 145°C. Found: C, 59.4; H, 6.1; N, 8.6. $C_{24}H_{30}N_3$ Sb calcd.: C, 59.8; H, 6.2; N, 8.7%. Mass spectrum: 481(4) $C_{24}H_{30}N_3$ Sb; 361(15) $C_{16}H_{20}N_2$ Sb; 240(4) $C_{8}H_{10}N$ Sb; 121(100) $C_{8}H_{10}N$.

(3-Dimethylaminopropyl)diphenylstibine, $Me_2N(CH_2)_3SbPh_2$ (IV)

A solution of sodium (4 g, 0.17 mol) in liquid ammonia (350 cm^3) was treated with powdered triphenylantimony (30 g, 0.085 mol) and the mixture stirred for 4 hours. Dry ammonium chloride (4.6 g, 0.087 mol) added, and after a further 1/2 hour, (3-chloropropyl)dimethylamine (10 g 0.08 mol) added dropwise until the red colour was discharged. The ammonia was boiled off, water (200 cm^3) and diethylether (200 cm^3) added, and the organic layer was separated, and dried (Na_2SO_4). Evaporation left a fawn oil which was pumped on at ambient temperature/0.5 torr for 3 hours; 20 g, 66%. Mass spectrum: 284(53)

^{*} Expressed as m/e, (% intensity relative to base) ion. Masses refer to ¹²¹Sb and intensities are uncorrected.

 $C_{11}H_{17}SbN$; 275(12) $C_{12}H_{10}Sb$; 198(35) C_6H_5Sb ; 154(57) $C_{12}H_{10}$; 84(12) $C_5H_{10}N$; 77(21) C_6H_5 ; 58(100) C_3H_8N .

A quaternary derivative was prepared by refluxing IV with excess MeI in ethanol, and recrystallised from ethanol; M.P. 218°C dec. Found: C, 42.5; H, 4.9; N 2.7. $C_{18}H_{25}NSbI$ calcd.: C, 42.7; H, 4.8%; N, 2.8%.

(3-Dimethylaminopropyl)dimethylstibine, $Me_2N(CH_2)_3SbMe_2(V)$

Sodium (5 g, 0.2 mol) and Me₃SbBr₂ (18 g, 0.05 mol) were added in succession to liquid ammonia (400 cm³) at -78° C, and the mixture stirred for 3 hours. A solution of (3-chloropropyl)dimethylamine (6.5 g, 0.05 mol) in diethyl ether (25 cm³) added dropwise. The ammonia was evaporated, water (200 cm³) and dichloromethane (200 cm³) added, the organic layer separated, dried (Na₂SO₄), and distilled. The residue was fractionated in vacuo to give the ligand as a clear liquid; B.P. 40°C/0.5 torr, 7 g, 60%. Mass spectrum: 222(41) C₆H₁₅NSb; 207(5) C₅H₁₂NSb; 151(7) C₂H₆Sb; 85(13) C₅H₁₁N, 84(27) C₅H₁₀N, 58(100) C₃H₈N.

A methiodide was prepared by adding the ligand to excess MeI in refluxing ethanol. The white product which separated was washed with ethanol and ether and dried; M.P. 188°C. Found: C, 22.2; H, 4.6; N, 2.7. $C_9H_{24}NSbI_2$ calcd.: C, 21.9; H, 4.5; N, 2.8%.

Bis(2-diphenylstibinoethyl)methylamine, $MeN(CH_2CH_2SbPh_2)_2$ (VI)

Method 1: A solution of sodium diphenylstibide in liquid ammonia was prepared as in IV. This was treated dropwise with bis(2-chloroethyl)methylamine $MeN(CH_2CH_2Cl)_2$ (6.6 g, 0.04 mol) in THF (100 cm³). A greyish suspension was produced. The ammonia was boiled off, water (250 cm³) and CH_2Cl_2 (200 cm³) added, the organic layer separated, dried (Na₂SO₄) and rotatory evaporated. The product was a fawn oil, 15 g, 55%, which was maintained at 50°C/ 0.1 torr for 3 hours to remove volatile impurities.

Method 2: Tetrahydrofuran (400 cm³) freshly distilled from sodium wire, was cooled to 0°C. Clean lithium (1.6 g, 0.23 mol) cut into small pieces under nitrogen was added, followed by Ph₃Sb (30 g, 0.085 mol). After about 15 minutes a deep red colour developed. The mixture was stirred at 0°C for 6 hours. It was then filtered under nitrogen to remove excess lithium, and t-butylchloride (6.2 g, 0.068 mol) added dropwise. After a further $\frac{1}{2}$ hour, MeN-(CH₂CH₂Cl)₂ (5.2 g, 0.035 mol) was added dropwise until the red colour was discharged. Work up in the usual way yielded an oil; 15 g, 67%.

A quaternary derivative was prepared from MeI in ethanol. The product was poorly soluble in most solvents. M.P. 150° C dec. Found: C, 46.6; H, 4.5%; N, 1.7. $C_{30}H_{34}Sb_2NI$ calcd.: C, 46.2; H, 4.3; N, 1.8%.

Bis(2-dimethylstibinoethyl)methylamine, MeN(CH₂CH₂SbMe₂)₂ (VII)

Sodium (8.5 g, 0.36 mol) and Me_3SbBr_2 (30 g, 0.09 mol) were added in succession to liquid ammonia and the mixture stirred for 3 hours at $-78^{\circ}C$. A solution of bis(2-chloroethyl)methylamine (7.1 g, 0.046 mol) in THF (100 cm³) was added very slowly until the red colouration was discharged. The ammonia was evaporated, diethylether (200 cm³) and water (200 cm³) added, the organic layer separated and dried. The solvent was distilled off at atmospheric pressure and the other volatiles removed at 50°C/0.1 torr. The residue was a fawn oil

which appeared essentially pure (¹H NMR). 12 g, 67%. Mass spectrum: 371(41) $C_8H_{20}NSb_2$; 287(15) $C_3H_9Sb_2$; 194(38) $C_4H_{11}NSb$; 192(28) C_4H_9NSb ; 178(14) C_4H_9Sb ; 151(77) C_2H_6Sb ; 136(27) CH_3Sb ; 121(15) Sb; 84(13) $C_5H_{10}N$; 58(100) C_3H_8N .

Sulphide derivative. Recrystallised sulphur (0.1 g, 0.3 mmol) was dissolved in boiling toluene (25 cm³) and the ligand (0.5 g, 0.13 mmol) added. The mixture was refluxed for 1 hour, cooled and decanted from a small amount of solid material. Diethyl ether (25 cm³) was added slowly, and the fawn solid separated on standing. Found: C, 23.4; H, 4.6; N, 2.8. $C_9H_{23}NSb_2S_2$ calcd.: C, 23.8; H, 5.1; N, 3.1. M.P. 151°C dec.

Tris(3-diphenylstibinopropyl)amine, $N(CH_2CH_2CH_2SbPh_2)_3$ (VIII)

A mixture of 3-hydroxypropylamine (15 g, 0.2 mol) and 3-chloropropanol (38 g, 0.4 mol) were added to ethanol (300 cm³) containing potassium carbonate (40 g, ca. 0.3 mol) and the mixture refluxed for 12 hours. The colourless mixture was filtered, and the filtrate evaporated to leave a viscous oil (32 g) which was shown by ¹H NMR to be the crude tris(3-hydroxypropyl)amine N(CH₂CH₂-CH₂OH)₃; 5.6(s) OH, 6.4(t) OCH₂, 7.3(m) NCH₂, 8.2(m) τ CH₂CH₂.

The crude oil was dissolved in CHCl₃ (200 cm³) and treated dropwise at 0°C with thionyl chloride (70 g, 0.58 mol) and stirred for 1 hour. The mixture was then refluxed for 3 hours, cooled and poured into 40% aqueous potassium hydroxide. The mixture was stirred vigorously, then the organic layer separated, dried (Na₂SO₄), and the solvent distilled off. A brown oil remained; 15 g, 36%. ¹H NMR: 6.4(t) ClCH₂, 7.6(t) NCH₂, 8.1 τ (m) CH₂CH₂CH₂, N(CH₂CH₂CH₂Cl)₃.

A solution of LiSbPh₂ prepared as in VI (Method 2) was treated dropwise with a solution of N(CH₂CH₂CH₂Cl)₃ (5.75 g, 0.023 mol) in THF (30 cm³) until the red stibide colour was discharged. The mixture was hydrolysed and worked up in the usual way. Removal of the solvent, and prolonged pumping at 0.1 torr produced a viscous oil. Attempts to crystallise this from ethanol, or ethanol/dichloromethane failed to produce a solid; 22 g, 79%. Found: C, 54.8; H, 4.3; N, 1.2. C₄₅H₄₂NSb calcd.: 56.1; H, 4.7; N, 1.5%.

We obtained small amounts of an insoluble white material which appeared to be an impure monomethiodide. The trisulphide derivative was not prepared in a pure form.

$Tris(3-dimethylstibinopropyl)amine, N(CH_2CH_2CH_2SbMe_2)_3$ (IX)

This was prepared in a similar manner to VII from sodium (8.2 g, 0.36 mol), Me_3SbBr_2 (30 g, 0.09 mol) and $N(CH_2CH_2CH_2Cl)_3$ (7.3 g, 0.03 mol). Work-up followed by removal of all volatile materials (50° C/0.01 torr) gave a very airsensitive yellowish oil, 6.5 g, 36%.

A trisulphide was prepared from sulphur (0.07 g, 2 mmol) and the ligand (0.5 g, 0.7 mmol) in toluene, and recrystallised from CHCl₃. It melts below room temperature to a brown oil. Found: C, 26.3; H, 5.1; N, 2.3. $C_{15}H_{26}NSb_3S_3$ calcd.: C, 26.1; H, 5.2; N, 2.0%.

Acknowledgements

We thank the British Council (BS) and NATO for support, Dr. J. Evans for obtaining mass spectra, and Dr. P.J. Parsons for discussion.

References

- 1 W. Levason and B. Sheikh, J. Organometal. Chem. 208 (1981) 1.
- 2 G. De Paoli, B. Zarli and C. Panattoni, Ric. Sci., 39 (1969) 355.
- 3 W. Levason, K.G. Smith, C.A. McAuliffe, F.P. McCullough, R.D. Sedgwick and S.G. Murray, J. Chem. Soc. Dalton, (1979) 1718.
- 4 W. Levason, C.A. McAuliffe and S.G. Murray, J. Organometal. Chem., 88 (1975) 171.
- 5 K. Henrick, D.L. Kepert, E. Shewchuk, K.R. Trigwell and S.B. Wild, Aust. J. Chem., 27 (1974) 727.
- 6 G. Gruttner and M. Wiernik, Ber, 48 (1915) 1751.
- 7 R.J. Dickinson, W. Levason, C.A. McAuliffe and R.V. Parish, J. Chem. Soc. Dalton, (1978) 177.
- 8 D. Wittenberg and H. Gilman, J. Org. Chem., 23 (1958) 1063.
- 9 T.L. Morris and R.C. Taylor, J. Chem. Soc. Dalton, (1973) 175.
- 10 H.A. Meinema, H.F. Martens and J.G. Noltes, J. Organometal. Chem., 110 (1978) 183.
- 11 R.A. Zingaro and A. Merijanian, J. Organometal. Chem., 1 (1964) 361.
- 12 (a) W. Levason, C.A. McAuliffe, S.G. Murray and R.D. Sedgwick, J. Organometal. Chem., 105 (1976)
 195; (b) W. Levason, C.A. McAuliffe and R.D. Sedgwick, J. Organometal. Chem., 84 (1975) 239.
- 13 R.S. Gohlke and F.W. McLafferty, Anal. Chem., 34 (1962) 1281.
- 14 W. Hewertson and H.R. Watson, J. Chem. Soc., (1962) 1490.
- 15 K.K. Chow, W. Levason and C.A. McAuliffe, J. Chem. Soc. Dalton, (1976) 1429.
- 16 D.W. Meek, P.E. Nicpon and V.I. Meek, J. Amer. Chem. Soc., 92 (1970) 5351.
- 17 L. Sacconi and I. Bertini, J. Amer. Chem. Soc., 90 (1968) 5443.
- 18 L. Sacconi, I. Bertini and F. Mani, Inorg. Chem., 7 (1968) 1417.
- 19 A. Tzschach and W. Lange, Chem. Ber., 95 (1962) 1360.
- 20 M. Mioque and J.P. Duclos, Chim. Ther., 4 (1969) 363.
- 21 J. Szmuszkovicz, Adv. Org. Chem., 4 (1963) 1.
- 22 W.E. Hanby and H.N. Rydon, J. Chem. Soc., (1947), 513.
- 23 J.P. Mason and D.J. Gasch, J. Amer. Chem. Soc., 60 (1938) 2816.